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Analysis of Wave Propagation in Anisotropic
Film Waveguides with Bent Optical Axes

MASAHIRO GESHIRO, MEMBER, IEEE; YASUO KATHARA, AND SINNOSUKE SAWA, MEMBER, 1IEEE

Abstract —We present an analytical method for studying the wave
propagation in anisotropic planar optical waveguides where the oblique
angle between the optical axis and the propagation axis changes arbitrarily
in the film surface along the propagation length. The analysis is based on
the coupled-mode theory, where the coupling between a guided mode and
radiation modes is regarded to be of major importance. We apply a
hypothetical boundary method to quantize the continuum of radiation
modes, and replace the continuously changing oblique angle by a step
approximation. It is shown that these approximations do not degrade the
computational accuracy. To exemplify the wave-propagation properties, we
deal with a waveguide consisting of LiNbO; and let the oblique angle
change linearly along the propagation length. It is found that the incident
guided TE mode leaks its power primarily in a very narrow region centered
on the critical oblique angle, and that TE radiation modes play an im-
portant role in the power conversion, even though they carry far less power
than the TM radiation modes.

I. INTRODUCTION

T IS OF fundamental interest to know the guiding
properties of dielectric optical waveguides composed of
anisotropic, as well as isotropic, materials. Such knowledge
is needed for applications to guided-wave devices for opti-
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cal integrated circuits. Usually, two different approaches
have been adopted in waveguide analysis. One approach is
based on the eigenvalue method in which modal solutions
of Maxwell’s equations are determined with the help of
boundary conditions provided that the waveguide is in-
finitely long and homogeneous along the propagation axis.
Most papers on wave propagation in anisotropic wave-
guides using this method have dealt with purely guided
modes [1]-[6]. Recently, interesting propagation character-
istics of hybrid leaky modes supported by planar aniso-
tropic waveguides or metal-diffused anisotropic wave-
guides have been analyzed where the optical axis of the
composing material makes an oblique angle with the prop-
agation axis in the film surface [7], [8].

The other approach is based on the coupled-mode theory
[9]. It is suitable for describing the wave propagation in
waveguides that are inhomogeneous along the propagation
axis and/or of finite length suitable for integrated optics
devices. Therefore, propagation properties obtained from it
may be useful from the device-planning viewpoint. In the
coupled-mode theory, power leakage of a hybrid leaky
mode in an anisotropic waveguide is attributed to mode
conversion between a guided mode and radiation modes of
the orthogonal polarization [10]. The coupled-mode theory
is always applicable to the analysis of wave propagation in
anisotropic waveguides having any nondiagonal dielectric
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Fig. 1. Curved channel optical waveguide formed by diffusion. The
optical axis of uniaxial crystalline material coincides with the z axis,
and a represents a local oblique angle.

tensor. For example, analyses of hybrid guided modes in
rectangular waveguides, or of amplitude modulators based
on the mode-conversion phenomenon due to the electro-
optic effect in metal-diffused LiNbO; or LiTaO; wave-
guides, have been reported [5], [6], [10]-[12].

Many problems of wave propagation in various aniso-
tropic waveguides have been studied in detail, as men-
tioned above. In most of the papers, however, whether
diagonal or not, the dielectric tensor of the composing
material does not depend on the coordinate of the propa-
gation direction z.

Incidentally, it is difficult to avoid bends of the propaga-
tion axis in practical applications of metal-diffused wave-
guides composed of anisotropic materials. The oblique
angle becomes a function of position along the propagation
direction in a curved waveguide consisting of uniaxial
crystalline materials, as shown in Fig. 1. Even in a straight
waveguide, a functional dependence of the diclectric tensor
on the z coordinate may be possible due to electrooptic
effect, if an externally applied electric field depends on z.
To the authors’ knowledge, however, wave-propagation
properties in such a waveguide have been scarcely studied
until now.

In the present paper, we analyze the wave propagation in
a straight planar waveguide composed of a uniaxial aniso-
tropic material in which the oblique angle depends on the z
coordinate. Numerical examples are given for the case that
the oblique angle depends linearly on the z coordinate. It
should be noted that the oblique angle in a circular bend of
metal-diffused anisotropic waveguide has this functional
dependence on the propagation length.

The present analysis is based on the coupled-mode the-
ory since no normal mode exists in a nonuniform wave-
guide. The wave propagation is described in terms of
coupled normal modes of an appropriate idealized, uni-
form waveguide [9]. In the present case, the coupling
coefficient to a continuum of radiation modes is such a
complicated function of the propagation constant, as well
as of the z coordinate, that it is very difficult to obtain the
exact solution of the coupled-mode equation. Therefore, we
introduce two perfect conducting walls at an appropriate
distance from the film surface. The continuum of radiation
modes in the original waveguide becomes discrete by the
additional boundary condition at the perfect conducting
walls where tangential electric-field components must
vanish. Secondly, the function describing the oblique angle
is approximated by a succession of steps. In the limit of
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Fig. 2. Waveguide structure of the asymmetric anisotropic slab wave-
guide and the coordinate system used for the analysis.

infinitely many steps, it is capable of approximating any
arbitrary function. These approximations simplify the ana-
Iytical procedure without degrading the accuracy.

II. AcCCURACY OF THE HYPOTHETICAL BOUNDARY
METHOD

The hypothetical boundary method has been used in the
analysis of wave propagation in isotropic waveguides, but
has never been applied to anisotropic problems [13]-[15].
The accuracy of the present hypothetical boundary method
is discussed, and its validity is shown, in this section.

We apply the hypothetical boundary method to the
problem in [10], where the hybrid leaky modes in LiNbO;-
planar waveguides are analyzed from the viewpoint of the
coupled-mode theory. The waveguide structure under con-
sideration is shown in Fig. 2, together with the coordinate
system used for the analysis. The propagation direction of
the optical wave is assumed to coincide with the z axis, and
the x axis is directional normal to the film surface. Hypo- -
thetical, perfect conducting walls are located at x = —b,
and x = b, parallel to the film surface; ¢ is the film thick-
ness. The free-space dielectric constant and dielectric
tensors of the film and substrate are represented by ¢, €,
and €, respectively. The optical axis of the uniaxial material
is assumed to make a certain oblique angle «, in the y—z
plane, with the z axis. In the waveguide coordinate system,
the dielectric tensor is expressed as

Kxxp 0 0
ép =€ 0 $274 Kwp (1)
0 szp Kzzp
where
— 2
Kxxp - nop

— pn2 2 2 2
K, ,=n,,co8"a+n,,sin" «a

= 12 oin2 2 2
K. ,=ny,sin"a+n;,cos”a

= ={(p2 —
KyZP szp (nep

2)
In the above equations, n,, and n,, are the ordinary and
extraordinary refractive indices of the material. The sub-
script p represents the film f or the substrate s.

In [10], the wave propagation is described by the cou-
pled-mode equation in terms of normal modes of the

2 .
nop)smacos Q.
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waveguide specified by the diagonal dielectric tensor

K v 0 0
€,=¢ 0 Kyyp 0 (3)
0 0 K..,

which is obtained by putting the off-diagonal elements in
(1) equal to zero. By taking account of the phase matching
condition for an appropriate oblique angle, the equation is
somewhat simplified as follows [10]:

o) = [ e(8) Ber(p )
'exp[j(ﬁg_ﬁs)zldﬁs (4)
(B, 2)=—w*(B)a(=)exp /(B - B)z] (5)

where g, 7, B,, and B, represent the slowly varying complex
amplitudes and the propagation constants of the TE guided
and TM substrate modes, respectively. The asterisk indi-
cates complex conjugation. p and k(f,) are the transverse
propagation constant and the coupling coefficient between
coupled modes [10]. The propagation constants of the
substrate modes belong to a continuum,

In the present analysis, the propagation constants of the
substrate mode become discrete because of the additional
boundary condition at the perfect conducting walls. There-
fore, (4) and (5) are rewritten in the following matrix
representation:

d .
4 4(z)= JC-A(2) ©)
where
a,(z)
a(z)= | %) )
a,n(2)
and
Bg cg,sl Cga”’
o sl Ba 0 0
C= 0 : (8)
- - - - 0
C;,Sn 0 e 0 BS"

In the above equations, the subscripts g and si indicate the
TE guided and TM substrate modes, respectively. The
vector 4 consists of the complex amplitudes of a guided
TE mode and n TM substrate modes. The matrix C is
Hermitian. The coupling coefficient between the guided
and substrate modes is expressed as the following overlap
integral of the electric field [9]:

=@ (b pTEr (i g™
Con= 2P /_szg (¢—¢)-EMdx (9)

where w is the angular frequency. Mode functions and
eigenvalue equations of the TE guided and TM substrate
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modes are expressed as follows:

E =
D{Sinhszcos Kt + —Z— coshyb, sin xt> %%’
t<x<b
D{sinhyb2 coskx + % coshyb, sin :cx}, O<x<t
Dsinh[y(b,+x)], —b,<x<0
H, = —;)%—OE), HZ:ZL—;—(’% : (10)
K= k%Kyyf — Bg2
Y2 =87~ koK,
8% =pB; kg (11)

x*tanh [8(b; — t)] tanhyb, tan kr
— kytanh [8(b; — )] — kdtanhyb, — yStanxt =0 (12)

for the TE guided mode, where p, is the free-space permea-
bility, &, the free-space wavenumber, H the magnetic field,
and

H,=
— §K,, h|A(by —
D{cos&bzcosot - sin £b, sinat cosh [ A(b, - x)] ,
oK. cosh[A (b, — )]
t<x<b,
— K,
D{cosébzcos ox — iK“f sin gbzsinox}, O<x<t
Dcos[¢(b,+x)], —by<x<0
_ Bsr . - J dJ
E.= weg Ky, 7 E.= wegK,,, T?;Hf (13)
K B
- zzf
o’ = Kxxf(kéKxxf - Bszz)
KZZS
= ’Ig;;(k%Kxxs - B3)
A =B - k; (14)
2
{Ko } coth[A(b; — t)] cot &b, tan ot
zzf
- Ko y KE coth[A(b; —t)] —%cotfhz

(15)

for the TM substrate mode. The amplitude coefficients D
and D are normalized to satisfy the relation

tanot =0

zzs

_l b3 *
P= 2f7b2(E><H ). dx (16)

where P is the power carried by the mode [16].
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Because C is a constant matrix, the solution of the
coupled-mode equation (6) can be expressed in terms of
the eigenvalue A, and the eigenvector U, of the matrix C as

A(z)=Y bUexp[— jA,z] (17)

where b, must be determined by a given initial condition.
Now letting a TE guided mode be incident into the wave-
guide, we have the following initial condition at z = 0:

(18)

Substituting (18) into (17), we get
A(0)=U-B (19)
where the matrix U has U, as the rth column and the
vector B consists of b,. Because U is a unitary matrix, we
can solve (19) easily. The result is
B=U-4(0) (20)
where U is the transposed conjugate matrix of U. There-
fore, the solution of (6), satisfying the initial condition (18),
is expressed as
A(z)=Zu1”‘l,U,,exp[—]7\,,z], z>90

v

(21)

where u,, is the element in the first row, the »th column of
the matrix U. The complex amplitude for the TE guided
mode is expressed as

ag(z)=Z|u1,,|2exp[—j7\,,z], z>0.

v

(22)

Though the guided modes are not affected by the perfect
conducting walls, substrate modes are strongly dependent
on the distance b,. The larger b, becomes, the more sub-
strate modes can be supported. In the actual numerical
analysis, it is not necessary to include all the substrate
modes in the coupled equations (6). The influence of the
location of the perfect conducting walls and the number of
the coupled substrate modes that are taken into account
shall be discussed later.

The waveguide parameters and the wavelength of light
are assumed as n,, = 2296, n, =2.286, n,,=2.21, n, =
2.2, t=135 pm, and A(wavelength)=0.63 um. In this case,
three TE guided modes can be supported by the wave-
guide. Fig. 3 shows the length dependence of the power
change of the third guided TE mode (the TE, mode),
where the oblique angle is assumed to be 15°. The ordinate
represents the normalized power of the TE, mode
la,(z)|?/|a,(0)|* and the abscissa is the normalized propa-
gation length & z. Solutions given by three different meth-
ods are drawn in the figure. One is the numerical solution
of the coupled-mode equations (4) and (5), obtained by
means of the Runge-Kutta-Gill (RKG) method. This solu-
tion can be regarded as the standard of approximating
accuracy. Our solution is practically indistinguishable from
the standard solution where it is assumed that b, = 307 and
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Fig. 3. Power change of the TE, mode due to mode conversion to TM
substrate modes. The terms of the coupled TM substrate modes are 80,
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Fig 4. Power change of the TE, mode due to mode conversion with the
number of the coupled TM substrate modes as a parameter.

by =20r. We have included 80 substrate modes in the
calculation. Though the solution given in [10] also shows a
similar tendency, its numerical values are different from
the standard or our solution. We do not discuss the accu-
racy of the perturbation solution [17], which is not shown
in the figure. Our method provides very accurate solutions
for other cases of TE, or TE, mode incidence.

Next, we discuss the required number of coupled sub-
strate modes used for the calculations. The waveguide
parameters, the wavelength, and the distance between the
two perfect conducting walls are assumed to have the same
values as in the previous example. The incident mode is the
TE, mode again. The dependence of the computational
accuracy on the number of coupled substrate modes is
illustrated in Fig. 4. In the present case, the solution
converges if over 80 coupled modes are included. It is
apparent, however, that the least number of the substrate
modes necessary for convergence depends strongly on the
location of the lower perfect conducting wall. So, for
different b, values, we cannot consistently discuss the
convergence of solution with the number of included sub-
strate modes. Let us pay attention to the effective index in
place of the number of them. Fig. 5 shows the envelope of
coupling coefficients between the TE, mode and the cou-
pled substrate modes. The ordinate represents the absolute
value of the normalized coupling coefficient [¢g. 51/ ko and
the abscissa is the effective index B/k,. The dashed verti-
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Fig. 5. The envelope of the normalized coupling coefficient between the
TE, mode and TM substrate modes as a function of the effective index.
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Fig. 6. Power change of the TE, mode due to mode conversion with the
position of the lower perfect conducting wall b, as a parameter.

cal line indicates the effective index of the TE, mode. The
upper limit of the effective index of the substrate mode is
2.286. The regions of effective index covered by coupled
substrate modes of each case in Fig. 4 are shown in the
figure. The first lobe includes almost 80 substrate modes
and two lobes, the first and second, include 160 substrate
modes. The solutions of these two cases are in good
agreement with each other, and coincide with the standard
in Fig. 4. Therefore, to get a solution of high accuracy it is
necessary to use enough substrate modes to cover the main
lobe. It should be noted that with increasing b, values,
more coupled substrate modes are needed for a good
approximation.

Lastly, we discuss the position of the perfect conducting
walls. Because substrate modes, as well as guided modes,
have evanescent fields in the cover region ¢ < x < bs, the
upper wall in Fig. 2 does not affect them if it is kept at an
appropriate distance from the film surface. Next, let us
discuss the effect of the lower perfect conducting wall after
setting the upper wall at by = 20z. The solutions for several
values of b, are drawn in Fig. 6. The other parameters are
the same as in the previous examples. Enough coupled
substrate modes are used to cover the main lobe of the
coupling coefficient for each value of b,. All curves are in
complete agreement except that the curve for b, = 5¢ begins
to depart from the others abruptly and strikingly at the
propagation length near ky,z =1x10*. The curve for b, =
10¢ begins to depart at near k,z = 2 10*, which is beyond
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the range of the abscissa shown in the figure. This feature
of the curve may be caused by radiation, which is reflected
from the lower perfect conducting wall. The incident guided
mode couples more strongly to the substrate mode, which
most nearly matches its propagation constant. Therefore,
the direction of power-leakage is approximately given by
the angle satisfying

(23)

where 6 is measured from the film surface to the direction
of the escaping radiation and B is the propagation constant
of the incident guided mode, or of the coupled substrate
mode, which is phase-matched with the incident mode. The
incident guided mode propagates the distance of 2b,cot §
along the z axis before the leakage-power comes back to
the film surface again after reflection at the perfect con-
ducting wall. When b, = 5¢, the normalized propagation
distance becomes kyz =1.2X10%, which is somewhat larger
than the upper limit of approximation but almost equal to
it. Therefore, the applicable condition for the present
method is expressed roughly as

koz <2kybycot . (24)
Within the region satisfying the above relation, we can
expect to get a very satisfactory solution.

Incidentally, quantization of the continuum of radiation
modes is also possible by truncating the substrate to have a
finite thickness or assuming another substrate of finite
thickness between the film and the original substrate. Iden-
tical results would be obtained by this method. With
the additional layer, however, the resultant structure be-
comes more complicated than that of the original planar
waveguide, which would be somewhat disadvantageous in
application of other problems. By contrast, the perfect
conducting walls are used only for simplifying the analyti-
cal procedure in the present analysis and do not alter the
simplicity of the original structure.

ITII. ANALYSIS OF A SYMMETRICAL SLAB
WAVEGUIDE WITH AN ARBITRARILY
VARYING OBLIQUE ANGLE

The waveguide under consideration is assumed to be
composed of uniaxial anisotropic materials of current in-
terest such as LiNbO, or LiTaO,. The waveguide structure
and the coordinate system used for the analysis are shown
in Fig. 7. The shaded portions, located parallel to the film
surface in x > |b|, are perfect conducting walls where the
tangential electric fields must vanish, and, in the present
structure, ¢ is the half-thickness of the film. The waveguide
is symmetrical with respect to the y—z plane and is uni-
form along the y coordinate. The z axis coincides with the
propagation direction and the x axis is normal to the film
surface.

Assuming that the optical axis of the material composing
the film and the substrate coincides with the z axis in the
region z <0, we can express the dielectric tensor as fol-
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Fig. 7 Waveguide structure of the symmetric anisotropic slab wave-
guide and the coordinate system used for the analysis
lows:
n’ , O 0
&,=¢| 0 nip 0 {. (25)
0 0 =

In the region z > 0, if we express the oblique angle in the
y—z plane by an arbitrary function of z

a=h(z) h(0)=0 (26)
the dielectric tensor can be represented as
K., O 0
€,=¢ 0 Ky Kizp (27)
0 K., K.,
and
Kooy =13,

= n2 2 2 nl
K,,,=n,,cos"a+ng,sin"a

= 12 <in? 2 2
2zp = HopSI @+ 1, COS"

K,_ = szp = (n2 -

2p er (28)
The expressions have the same form as those in the previ-
ous section, except for the functional dependence of a on z.

We are interested in the wave-propagation properties for
z > 0 when a guided mode, whether TE or TM, propagates
in the positive z direction. The wave propagation for z > 0
is described again by the following coupled-mode equation
in terms of normal modes in z < 0 [9]:

2 .
nop)smacos a.

d .

L A(z) =~ jC(2)A(2). (29)
The vector A here consists of complex amplitudes of the
guided TE and TM modes and of the TE and TM radia-
tion modes. The matrix C(z) is Hermitian, with the follow-
ing matrix element in the pth row and the vth column:

=k, +B8(pn,») (30)
where
“’eof A, E*§-E, dx (31)
and
1, =y
s ={y 2. (32)

We define A, and § in (31) as

Ap=5(n§p—n§p) (33)
and
0 0 0
§=10 &, 9 (34)
0 4§, 6.
respectively, where
8,,=1—cos2a
0,, =cos2a—1
d,, =6, =sin2a. (35)

Because of the symmetry of the waveguide structure, we
separate the problem into two cases. In one case, the
incident guided mode is of even TE (or odd TM) type, and
in the other case, the odd TE (or the even TM) guided
mode is incident. Let us concentrate on the case of an
incident even TE guided mode. The other case can be
treated in a similar manner. There exist three types of
coupling: the coupling between TE modes through §,,
between TM modes through §,,, and between a TE mode
and a TM mode through §,, or §,,. The coupling coeffi-
cients are expressed as

[O]3 ¥
kg = ke =222, [ A EIEFax (36)

for the TE-TE coupling, and

R s T AENEMdx (37)
for the TM-TM coupling, and
kem= ke =220, [ AEFEMax - (39)

for the TE-TM coupling, respectively. The rectangular
components of the electric field appearing as integrands in
the above integrals may be for the guided or the radiation
modes. The mode functions and the eigenvalue equations
are omitted here.

Now, let us apply a step approximation to (26), ex-
pressing the arbitrary oblique angle, to simplify the analy-
sis. We divide the waveguide at z> 0 into consecutive
sections of small distance d as shown in Fig. 8. The oblique
angle is assumed to take the constant value given by the
average

1 rud
a == hiz)dz, i=1,2,3,--- 39
. e (39)

in each section. Then, we can write the coupled-mode
equation in the ith section with constant coupling coeffi-
cient as

d

ZAN(2) == jCO-AO(2),  (i-D)d<z<id. (40)

The solution can be expressed again in terms of the eigen-
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value A? and the eigenvector U of the matrix C'" as

AV (z) =L 00-49((i-1)d)

UMexp[— Az ~(i-1)d}],
(i-1)d<z<id (41)

where A((i —1)d) is the initial condition for the ith
section, which is given by the following relation:

AV((i—-1)d)=A4""P((i—-1)d). (42)
Therefore, we can obtain the solution at an arbitrary
position z > 0 by successive application of (41) and (42),
after getting the solution in the first section with the initial
condition A(0). Shorter sections increase the accuracy of
the solution. The reflected waves propagating in the nega-
tive z direction are neglected in the present analysis be-
cause the index differences between successive sections are
very small [18].

Lastly, we apply our method to the analysis of one
concrete example. The waveguide is assumed to be com-
posed of LiNbQ;. It is also assumed that the oblique angle
in z > 0 depends linearly on the z coordinate as follows:

a=h(z)=%, z>0. (43)

The above relation can be regarded as representing the
oblique angle of a circularly bent waveguide with radius of
curvature R. i

The parameters of the waveguide structure have been
chosen so that n,, =2.29, n,, = 22,n,,=228,n,,=217,
kot =1.6m, b/t =30, and koR =1.2x10*/7. Such a wave-
guide can support only the first guided TE and TM modes
except the radiation modes, in the negative z region. Fig. 9
shows the change of modal power caused by the mode
conversion in the positive z region when only the first even
TE guided mode is excited in the negative z region. The
coupling between TE modes may be considered to be
small, so it is being neglected. The ordinate represents the
normalized power of the first even TE guided mode. The
oblique angle is used to represent the abscissa instead of
the propagation length. The increase in the oblique angle is
proportional to the propagation length. The accuracy of
the approximation is illustrated in the figure with the
difference of the oblique angles between two adjacent
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Fig. 9. Power change of the guided mode due to mode conversion with
the step-difference of the oblique angle as a parameter. TE radiation
modes as the coupled modes are not taken into account.
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Fig. 10. Power change of the gmded mode and radiation modes of both
types due to mode conversion. The dashed-dotted line represents the
solution obtained by neglecting TE radiation modes as the coupled
modes.

sections as a parameter. It is clear that we would get
solutions of considerably higher accuracy by using smaller
divisions than steps of 3°. We have used 34 TM radiation
modes for the numerical analysis which are covering the
effective index of the TM radiation mode in the region of
2.17-2.28, and are considered to be sufficient for getting a
good approximation.

Fig. 10 illustrates what happens when TE radiation
modes are also included in the analysis. We included an
equal number of TE and TM radiation modes for the
numerical analysis. The solution obtained by neglecting the
TE radiation mode is drawn again with the dashed—dotted
line for comparison. The change of power of the TE guided
mode in both cases shows quite similar features, except
that the power, in the lattér case, becomes appreciably
smaller in the region of a larger oblique angle. The dif-
ference is, of course, caused by the additional TE radiation
modes. Though the stored power of TE radiation modes is
negligibly small, as illustrated in Fig. 10, the contribution
to the power conversion between the guided TE mode and
TM radiation modes cannot be neglected in the present
example.

It has been pointed out that the upper limit of the
critical angle at which the guided TE mode begins to leak
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is defined as [7]

(44)

o, = arcsin

We can calculate the critical angle a, =19.7° for the pre-
sent example. It is found from the figures that the power of
the guided TE mode decreases markedly in the narrow
region of 15°-24° of the oblique angle within which the
critical angle calculated from (44) is included.

Mode coupling critically depends on the phase-matching
condition between the coupled modes. With the increase of
the oblique angle, K, in (27) decreases according to (28),
while K, remains unchanged. Since the strongest electric-
field component E, of the TE mode senses K, as the
refractive index of the medium, its propagation constant
decrcases as the oblique angle increases. On the other
hand, the propagation constant of the TM mode does not
change. At any oblique angle smaller than the critical
angle, there exists no TM radiation mode which is phase-
matched with the guided TE mode. Therefore, the coupling
to the TM radiation mode is not so significant that the
power carried by the guided TE mode scarcely decreases
there, as shown in Fig. 10. When the oblique angle is larger
than the critical angle, the guided TE mode always matches
its propagation constant with some TM radiation mode.
Mode coupling, however, also depends strongly on the
field overlapping between the coupled modes. The coupling
coefficient given by (38) becomes an appreciable value only
if both conditions are satisfied. The field of the guided
mode varies according to a cosine function in the film
region and decays exponentially in the surrounding region,
while that of the radiation mode is expressed in terms of a
standing wave throughout the entire region. The larger the
oblique angle, the smaller the propagation constant of the
radiation mode, which is phase-matched with the guided
TE mode. For the radiation mode, the decrease of the
propagation constant is accompanied by more rapid spatial
oscillations in the transverse direction of the standing
wave, which reduces the value of the overlap integral of the
field. Therefore, the incident guided TE mode leaks its
power primarily only in a very narrow region centered on
the critical oblique angle as shown in Fig. 10. It would be
helpful in understanding the above physical explanation to
refer to [7, figs. 9 and 10].

In the present paper, the symmetric waveguide structure
has been adopted for simplicity in analytical procedure.
The present analysis, however, can cover the practical
asymmetric metal-diffused optical waveguides as well.
Numerical examples for the case of odd guided mode
incidence would be applicable to them because of large
asymmetry in their structure. From the present analysis, we
can also get some fundamental information about channel
waveguides having two-dimensional field confinement in
the transverse section. In general, there exist two types of
mode groups supported by such a channel waveguide as
shown in Fig. 1. The mode belonging to one type is
principally polarized normal to the waveguide surface, and
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that belonging to the other type has a principal transverse
electric-field component parallel to the waveguide surface.
Both types are almost TEM-like. The latter type has the
same principal electric-field component as the TE mode of
the slab waveguide shown in Fig. 7. Thus, the electric field
of this mode senses the same refractive index as the TE
mode of the slab waveguide. Therefore, the results of the
present analysis will be applicable almost directly to the
mode of the latter type supported by the channel wave-
guide.

IV. CONCLUSIONS

We have studied the wave propagation in a symmetrical,
anisotropic slab waveguide consisting of uniaxial crystal-
line material. The direction of the optical axis may change
arbitrarily along the waveguide. The analysis was based on
the coupled-mode theory. We used a step function ap-
proximation for the arbitrary directional change of the
optical axis, and applied the hypothetical boundary method
to quantize the continuum of the radiation modes.

We first analyzed the wave propagation in the waveguide
with a constant oblique angle to estimate the approxi-
mating accuracy of our method. As a result, it is found
that our solution is highly accurate except for the error in-
troduced by reflected radiation from the hypothetical
boundary, which appears after the wave has traveled some
distance along the waveguide. Next, we described the
method used in the analysis of wave propagation in a
waveguide whose optical axis changes its direction arbi-
trarily. A waveguide with linear oblique angle change was
analyzed as a concrete example.

As a result, it is found that the guided TE mode leaks its
power predominantly in a very narrow region around the
critical oblique angle, and that TE radiation modes play an
important role in the power conversion, though the amount
of power carried by them is much smaller than that of TM
radiation modes.
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