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Abstract —We present an analytical method for studying the wave

propagation in anisotropic planar opticaf wavegnides where the oblique
angle between the optical axis and the propagation axis changes arbitrarily

in the film surfacealong the propagation length. The analysisis basedon
the coupled-modetheory, where the coupling between a guided mode and

radiation modes is regarded to he of major importance. We apply a

hypothetical boundary method to quantize the continuum of radiation

modes, and replace the continuously changing oblique angle by a step

approxhnation. It k shownthat these approximations do not degrade the

computational accuracy. To exemptify the wave-propagation properties, we

deaf with a wavegnide consisting of LlNb03 and let the obfique angle

change linearly along the propagation length. It is found that the incident

guided TE mode leaks its power primarily in a very narrow region centered

on the criticaf obtiqne angle, and that TE radiation modes play an im-

portant role in the power conversion, even though they carry far less power

than the TM radiation modes.

I. INTRODUCTION

I T IS OF fundamental interest to know the guiding

properties of dielectric optical waveguides composed of

anisotropic, as well as isotropic, materials. Such knowledge

is needed for applications to guided-wave devices for opti-
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cal integrated circuits. Usually, two different approaches

have been adopted in waveguide analysis. One approach is

based on the eigenvalue method in which modal solutions

of Maxwell’s equations are determined with the help of

boundary conditions provided that the waveguide is in-

finitely long and homogeneous along the propagation axis.

Most papers on wave propagation in anisotropic wave-

guides using this method have dealt with purely guided

modes [1]–[6]. Recently, interesting propagation character-

istics of hybrid leaky modes supported by planar aniso-

tropic waveguides or metal-diffused anisotropic wave-

guides have been analyzed where the optical axis of the

composing material makes an oblique angle with the prop-

agation axis in the film surface [7], [8].

The other approach is based on the coupled-mode theory

[9]. It is suitable for describing the wave propagation in

waveguides that are inhomogeneous along the propagation

axis and/or of finite length suitable for integrated optics

devices. Therefore, propagation properties obtained from it

may be useful from the device-planning viewpoint. In the

coupled-mode theory, ‘power leakage of a hybrid leaky

mode in an anisotropic waveguide is attributed to mode

conversion between a guided mode and radiation modes of

the orthogonal polarization [10]. The coupled-mode theory

is always applicable to the analysls of wave propagation in

anisotropic waveguides having any nondiagonal dielectric
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Fig. 1. Curved channel optical waveguide formed by diffusion. The
optical axis of uniaxial crystalline material coincides with the z axis,
and a representsa local oblique angle.

tensor. For example, analyses of hybrid guided modes in

rectangular waveguides, or of amplitude modulators based

on the mode-conversion phenomenon due to the electro-

optic effect in metal-diffused LiNb03 or LiTa03 wave-

guides, have been reported [5], [6], [10] -[12].

Many problems of wave propagation in various aniso-

tropic waveguides have been studied in detail, as men-

tioned above. In most of the papers, however, whether

diagonal or not, the dielectric tensor of the composing

material does not depend on the coordinate of the propa-

gation direction z.

Incidentally, it is difficult to avoid bends of the propaga-

tion axis in practical applications of metal-diffused wave-

guides composed of anisotropic materials. The oblique

angle becomes a function of position along the propagation

direction in a curved waveguide consisting of uniaxial

crystalline materials, as shown in Fig. 1. Even in a straight

waveguide, a functional dependence of the dielectric tensor

on the z coordinate may be possible due to electrooptic

effect, if an externally applied electric field depends on z.

To the authors’ knowledge, however, wave-propagation

properties in such a waveguide have been scarcely studied

until now.

In the present paper, we analyze the wave propagation in

a straight planar waveguide composed of a uniaxial aniso-

tropic material in which the oblique angle depends on the z

coordinate. Numerical examples are given for the case that

the oblique angle depends linearly on the z coordinate. It

should be noted that the oblique angle in a circular bend of

metal-diffused anisotropic waveguide has this functional

dependence on the propagation length.

The present analysis is based on the coupled-mode the-

ory since no normal mode exists in a nonuniform wave-

guide. The wave propagation is described in terms of

coupled normal modes of an appropriate idealized, uni-

form waveguide [9]. In the present case, the coupling

coefficient to a continuum of radiation modes is such a

complicated function of the propagation constant, as well

as of the z coordinate, that it is very difficult to obtain the

exact solution of the coupled-mode equation. Therefore, we

introduce two perfect conducting walls at an appropriate

distance from the film surface. The continuum of radiation

modes in the original waveguide becomes discrete by the

additional boundary condition at the perfect conducting

walls where tangential electric-field components must

vanish. Secondly, the function describing the oblique angle

is approximated by a succession of steps. In the limit of
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Fig. 2. Waveguide structure of the asymmetric anisotropic slab wave-
guide and the coordinate system used for the analysis.

infinitely many steps, it is capable of approximating any

arbitrary function. These approximations simplify the ana-

lytical procedure without degrading the accuracy.

II. ACCURACY OF THE HYPOTHETICAL BOUNDARY

METHOD

The hypothetical boundary method has been used in the

analysis of wave propagation in isotropic waveguides, but

has never been applied to anisotropic problems [13] -[15].

The accuracy of the present hypothetical boundary method

is discussed, and its validity is shown, in this section.

We apply the hypothetical boundary method to the

problem in [10], where the hybrid leaky modes in LiNbOa-

planar waveguides are analyzed from the viewpoint of the

coupled-mode theory. The waveguide structure under con-

sideration is shown in Fig. 2, together with the coordinate

system used for the analysis, The propagation direction of

the optical wave is assumed to coincide with the z axis, and

the x axis is directional normal to the film surface. Hypo-

thetical, perfect conducting walls are located at x = – bz

and x = b3 parallel to the film surface; z is the film thick-

ness. The free-space dielectric constant and dielectric

tensors of the film and substrate are represented by ~0, /f,

and {,, respectively. The optical axis of the uniaxial material

is assumed to make a certain oblique angle a, in the y – z

plane, with the z axis. In the waveguide coordinate system,

the dielectric tensor is expressed as

‘P=(’F i: <:]

where

K Xxp = n~P

K
YYP

= n~Pcos2a+ n~psin2a

K = n~psin2rx+ n~pcos2aZzp

K
Y~P

= K,Yp =
(dP-%P)sin~cos~

(2)

In the above equations, n ~p and n ,P are the ordinary and

extraordinary refractive indices of the material. The sub-

script p represents the film ~ or the substrate ,s.

In [10], the wave propagation is described by the cou-

pled-mode equation in terms of normal modes of the

(1)



-- ”----- . . . . . . . . . . . . -..-”. - .m. a.. ..7 . .,. ”,.-..-=. - . . . . . . . . . . .--...--” 341UIXXUKU t?l U1. . WAVL I’KUI’RUA1l VIN llY AINIWJLKVrlL rlLM Wfi Yt(JUIUEb

waveguide specified by the diagonal dielectric tensor

[

K Xxp 00

ZP=co O KYYP O

0 0 K2,P

(3)

which is obtained by putting the off-diagonal elements in

(1) equal to zero. By taking account of the phase matching

condition for an appropriate oblique angle, the equation is

somewhat simplified as follows [10]:

“exp[j(&&)z] dp, (4)

where g, r, fig, and & represent the slowly varying complex

amplitudes and the propagation constants of the TE guided

and TM substrate modes, respectively. The asterisk indi-

cates complex conjugation. p and K( ~~ ) are the transverse

propagation constant and the coupling coefficient between

coupled modes [10]. The propagation constants of the

substrate modes belong to a continuum.

In the present analysis, the propagation constants of the

substrate mode become discrete because of the additional

boundary condition at the perfect conducting walls. There-

fore, (4) and (5) are rewritten in the following matrix

representation:

where

and

c=

$l(z)=–jc./

I a~(z)

a,l(z)
A(z)= .

\a,n(z)

(6)

(7)

& Cg,sl “ “ “ Cg,,n

Cg.l &l o . . . 0

() ”.”.:,. (8)

1‘ : ““”““’
o

C;,,n o .0. 0 /3,a I
In the above equations, the subscripts g and si indicate the

TE guided and TM substrate modes, respectively. The

vector A consists of the complex amplitudes of a guided

TE mode and n TM substrate modes. The matrix C is

Hermitian. The coupling coefficient between the guided

and substrate modes is expressed as the following overlap

integral of the electric field [9]:

u_—
J

b3 ETIP. (; – :). E:”dx
Cg’” - 4P -~, g

(9)

where o is the angular frequency. Mode functions and

eigenvalue equations of the TE guided and TM substrate

modes are expressed as follows:

EY =

[{’D sinhyb2 cos ‘t+ ~ coshybz sin ‘t
}

sinh[8(b~– x)]

sinh[8(b3 –t)] ‘

I
t<x<bj

{ }
D sinhybz cos KX + ~ coshybz sin KX , O<x<t

‘2tanh[8(b3 – t)] tanhyb2tan Kt

– ‘ytanh[b(b~ – t)]– ‘8tanhyb2 – yi$tan Kt = O (12)

for the TE guided mode, where p. is the free-space permea-

bility, k. the free-space wavenumber, H the magnetic field,

and

HY =

{

tLf
~ cos [b2cos ot – ~ sin <b2sinut

)

cosh[A(bJ–x)]

Zzs cosh[A(b3– t)] ‘

t<x<b~

{
‘K”f sin .$b2sinoxE COS <bz COS (7X – ~

}

O<x<t
Zzs

~cos[&(b2 +x)], –b2<x<0

EX =
t% ~

E,= ‘J
~foKxxp

Y
~ HY

@fo Kzzp
(13)

~2=
K
~ k~KXX~ - fj,: )
K (

Xxf

g2 == ~(~&s - I%)
Xxs

A2==fi; -k; (14)

(+)2coth[A(b3-t)lcottb2tanut
Zzj’

— ~~coth[A(b3–t)]–: cot ~b2
22s “f. .

_ (A
—tanut=O
K

(15)
~~~

for the TM substrate mode. The amplitude coefficients D

and ~ are normalized to satisfy the relation

~=~ b3
J(2 _h,

EXH*)2dx (16)

where P is the power carried by the mode [161.
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Because C is a constant matrix, the solution of the

coupled-mode equation (6) can be expressed in terms of

the eigenvalue ~. and the eigenvector Q, of the matrix C as

A(z) =~bp~exp[-jXVz] (17)
v

where b,, must be determined by a given initial condition.

Now letting a TE guided mode be incident into the wave-

guide, we have the following initial condition at z = O:

(l\

A (0)= 0 . (18)

\o/

Substituting (18) into (17), we get

A(0)=U. B (19)

where the matrix U has U. as the v th column and the

vector B consists of bu. Because U is a unitary matrix, we

can solve (19) easily. The result is

B=ti.A(0) (20)

where U is the transposed conjugate matrix of U. There-

fore, the solution of (6), satisfying the initial condition (1 8),

is expressed as

f4(z) = ~zffi,UPexp[– j~JjZ]3 Z>(3 (21)
1,

where Ulv is the element in the first row, the v th column of

the matrix U. The complex amplitude for the TE guided

mode is expressed as

ag(~) = zlul,lzexp [–.jx,,z], Z> (). (22)
v

Though the guided modes are not affected by the perfect

conducting walls, substrate modes are strongly dependent

on the distance bz. The larger bl becomes, the more sub-

strate modes can be supported. In the actual numerical

analysis, it is not necessary to include all the substrate

modes in the coupled equations (6). The influence of the

location of the perfect conducting walls and the number of

the coupled substrate modes that are taken into account

shall be discussed later.

The waveguide parameters and the wavelength of light

are assumed as nO~= 2.296, no, = 2.286, ne~ = 2.21, n,. =

2.2, t= 5 pm, and A(wavelength) = 0.63 pm. In this case,

three TE guided modes can be supported by the wave-

guide. Fig. 3 shows the length dependence of the power

change of the third guided TE mode (the TEZ mode),

where the oblique angle is assumed to be 150. The ordinate

represents the normalized power of the TE2 mode

Iag(z)l 2/ lag(0)] 2 and the abscissa is the normalized propa-
gation length kOz. Solutions given by three different meth-

ods are drawn in the figure. One is the numerical solution

of the coupled-mode equations (4) and (5), obtained by

means of the Runge-Kutta-Gill (RKG) method. This solu-

tion can be regarded as the standard of approximating

accuracy. Our solution is practically indistinguishable from

the standard solution where it is assumed that bz = 30t and

1

E.75
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PRESENT flETHOD
Q

.5 R. K,G, METHOD
H

7
~

REFERENCE (10)

E
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Fig. 3. Power change of the TEZ mode due to mode conversion to TM

substrate modes. The terms of the coupled TM substrate modes are 80,

b? = 30t, and b~ = 20r m the present method.
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Flg 4. Power change of the TE2 mode due to mode conversion with the

number of the coupled TM substrate modes as a parameter,

b~ = 20t. We have included 80 substrate modes in the

calculation. Though the solution given in [10] also shows a

similar tendency, its numerical values are different from

the standard or our solution. We do not discuss the accu-

racy of the perturbation solution [17], which is not shown

in the figure. Our method provides very accurate solutions

for other cases of TEO or TEI mode incidence.

Next, we discuss the required number of coupled sub-

strate modes used for the calculations. The waveguide

parameters, the wavelength, and the distance between the

two perfect conducting walls are assumed to have the same

values as in the previous example. The incident mode is the

TE2 mode again. The dependence of the computational

accuracy on the number of coupled substrate modes is

illustrated in Fig. 4. In the present case, the solution

converges if over 80 coupled modes are included. It is

apparent, however, that the least number of the substrate

modes necessary for convergence depends strongly on the

location of the lower perfect conducting wall. So, for

different bz values, we cannot consistently discuss the

convergence of solution with the number of included sub-

strate modes. Let us pay attention to the effective index in

place of the number of them. Fig. 5 shows the envelope of

coupling coefficients between the TE2 mode and the cou-

pled substrate modes. The ordinate represents the absolute

value of the normalized coupling coefficient ICg,~,I/k ~ and

the abscissa is the effective index ~/k.. The dashed verti-
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Fig. 5. The envelope of the normalized couphng coefficient between the
TE2 mode and TM substrate modes as a function of the effective index.
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Fig. 6. Powerchangeof the TE2 mode due to mode conversionwith the
position of the lower perfect conducting wall bl as a parameter.

cal line indicates the effective index of the TE2 mode. The

upper limit of the effective index of the substrate mode is

2.286. The regions of effective index covered by coupled

substrate modes of each case in Fig. 4 are shown in the

figure. The first lobe includes almost 80 substrate modes

and two lobes, the first and second, include 160 substrate

modes. The solutions of these two cases are in good

agreement with each other, and coincide with the standard

in Fig. 4. Therefore, to get a solution of high accuracy it is

necessary to use enough substrate modes to cover the main

lobe. It should be noted that with increasing bz values,

more coupled substrate modes are needed for a good

approximation.

Lastly, we discuss the position of the perfect conducting

walls. Because substrate modes, as well as guided modes,

have evanescent fields in the cover region t< x < b~, the

upper wall in Fig. 2 does not affect them if it is kept at an

appropriate distance from the film surface. Next, let us

discuss the effect of the lower perfect conducting wall after

setting the upper wall at b~ = 20t. The solutions for several

values of bl are drawn in Fig. 6. The other parameters are

the same as in the previous examples. Enough coupled

substrate modes are used to cover the main lobe of the

coupling coefficient for each value of bz. All curves are in

complete agreement except that the curve for bz = 5t begins

to depart from the others abruptly and strikingly at the

propagation length near kO-z= 1 x 104. The curve for b2 =

10t begins to depart at near kOz = 2 X 104, which is beyond

343

the range of the abscissa shown in the figure, This feature

of the curve may be caused by radiation, which is reflected

from the lower perfect conducting wall. The incident guided

I II

1-‘
mode couples more strongly to the substrate mode, which

,, most nearly matches its propagation constant. Therefore,

, 1 the direction of power-leakage is approximately given by
1,8 the angle satisfying

,; ,
P,:, cosf9=— (23)

nO~kO

‘j,
where /3 is measured from the film surface to the direction

of the escaping radiation and ~ is the propagation constant

of the incident guided mode, or of the coupled substrate

mode, which is phase-matched with the incident mode. The

incident guided mode propagates the distance of 2 b~cot 0

along the z axis before the leakage-power comes back to

the film surface again after reflection at the perfect con-

ducting wall. When b2 = 5t, the normalized propagation

distance becomes koz = 1.2 X 104, which is somewhat larger

than the upper limit of approximation but almost equal to

it. Therefore, the applicable condition for the present

method is expressed roughly as

koz < 2kOb2cot9. (24)

Within the region satisfying the above relation, we can

expect to get a very satisfactory solution.

Incidentally, quantization of the continuum of radiation

modes is also possible by truncating the substrate to have a

finite thickness or assuming another substrate of finite

thickness between the film and the original substrate. Iden-

tical results would be obtained by this method. With

the additional layer, however, the resultant structure be-

comes more complicated than that of the original planar

waveguide, which would be somewhat disadvantageous in

application of other problems. By contrast, the perfect

conducting walk are used only for simplifying the analyti-

cal procedure in the present analysis and do not alter the

simplicity of the original structure.

HI. ANALYSIS OF A SYMMETRICAL SLAB

WAVEGUIDE WITH AN ARBITRARILY

VARYING OBLIQUE ANGLE

The waveguide under consideration is assumed to be

composed of uniaxial anisotropic materials of current in-

terest such as LiNb03 or LiTa03. The waveguide structure

and the coordinate system used for the analysis are shown

in Fig. 7. The shaded portions, located parallel to the film

surface in x > \b 1, are perfect conducting walls where the

tangential electric fields must vanish, and, in the present

structure, t is the half-thickness of the film. The waveguide

is symmetrical with respect to the y – z plane and is uni-

form along the y coordinate. The z axis coincides with the

propagation direction and the x axis is normal to the film

surface.

Assuming that the optical axis of the material composing

the film and the substrate coincides with the z axis in the

region z <0, we can express the dielectric tensor as fol-
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Fig. 7 Waveguide structure of the symmetric amsotropic slab wave-
gutde and the coordinate system used for the analysls

lows:

In theregionz>O, if we express the oblique angle in the

Y – z pkme by an arbitrary function of z

CY=h(z) h(0)=O (26)

the dielectric tensor can be represented as

and

K x Xp = nip

K
YYP

= n~pcos2 a-t n~psin2a

K z 2p = n~psin2cr+ n~pcosza

KpzP=KZYp= (n~p-njp)sinacosa. (28)

The expressions have the same form as those in the previ-

ous section, except for the functional dependence of a on z.

We are interested in the wave-propagation properties for

z >0 when a guided mode, whether TE or TM, propagates

in the positive z direction. The wave propagation for z >0

is described again by the following coupled-mode equation

in terms of normal modes in z <0 [9]:

-$4(z) =-jc(z).A (z). (29)

The vector A here consists of complex amplitudes of the

guided TE and TM modes and of the TE and TM radia-

tion modes. The matrix C(z) is Hermitian, with the follow-

ing matrix element in the pth row and the v th column:

and

(31)

(32)

We define Ap and 8 in (31) as

(33)

respectively, where

13yp=l–cos2a

(!Zz=cos’a-l

6,2 = 6=,,= sin2a. (35)

Because of the symmetry of the waveguide structure, we

separate the problem into two cases. In one case, the

incident guided mode is of even TE (or odd TM) type, and

in the other case, the odd TE (or the even TM) guided

mode is incident. Let us concentrate on the case of an

incident even TE guided mode. The other case can be

treated in a similar manner. There exist three types of

coupling: the coupling between TE modes through ISYY,

between TM modes through IS,,, and between a TE mode

and a TM mode through i3YZor i$=Y.The coupling coeffi-

cients are expressed as

for the TE-TE coupling, and

for the TM-TM coupling, and

for the TE–TM coupling, respectively. The rectangular

components of the electric field appearing as integrands in

the above integrals may be for the guided or the radiation

modes. The mode functions and the eigenvalue equations

are omitted here.

Now, let us apply a step approximation to (26), ex-

pressing the arbitrary oblique angle, to simplify the analy-

sis. We divide the waveguide at z >0 into consecutive

sections of small distance d as shown in Fig, 8. The oblique

angle is assumed to take the constant value given by the

average

in each section. Then, we can write the coupled-mode

equation in the i th section with constant coupling coeffi-

cient as

:A(’)(2)=–jc(’).A(’)(z),(i-l) d<z<id. (40)

The solution can be expressed again in terms of the eigen-
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Fig. 9. Power changeof the guided mode due to mode conversion with

the step-difference of the oblique angle as a parameter. TE radiation
modes as the coupled modes are not taken into account.

.~(l)exp [-jX$){Z-(i-l)~ }],

(i-l) d<z<id (41)

where A ‘i) ((i – 1) d ) is the initial condition for the i th
section, which is given by the following relation:

A(’)((i –l)d)=A(’-l)((i –l)d). (42)

Therefore, we can obtain the solution at an arbitrary

position z >0 by successive application of (41) and (42),

after getting the solution in the first section with the initial

condition A(0). Shorter sections increase the accuracy of

the solution. The reflected waves propagating in the nega-

tive z direction are neglected in the present analysis be-

cause the index differences between successive sections are

very small [18].

Lastly, we apply our method to the analysis of one

concrete example. The waveguide is assumed to be com-

posed of LiNb03. It is also assumed that the oblique angle

in z >0 depends linearly on the z coordinate as follows:

a=h(z)=;, Z>o. (43)

The above relation can be regarded as representing the

oblique angle of a circularly bent waveguide with radius of

curvature R.

The parameters of the waveguide structure have been

chosen so that nO~= 2.29, nef = 2.2, no, = 2.28, ne~ = 2.17,

kot = 1.67r, b/t = 30, and koR =1.2x 104/n. Such a wave-

guide can support only the first guided TE and TM modes

except the radiation modes, in the negative z region. Fig. 9

shows the change of modal power caused by the mode

conversion in the positive z region when only the first even

TE guided mode is excited in the negative z region. The

coupling between TE modes may be considered to be

small, so it is being neglected. The ordinate represents the

normalized power of the first even TE guided mode. The

oblique angle is used to represent the abscissa instead of

the propagation length. The increase in the oblique angle is

proportional to the propagation length. The accuracy of

the approximation is illustrated in the figure with the

difference of the oblique angles between two adjacent

n
.
. .s

M=2.29

r4f=2.2

~~=2.28

. Q~=2.17
TM RADIATION MODE

TE RAD1ATION MODE
o

0 20 40 60

OBLIQUE ANGLE
(DEGREE)

Fig. 10. Power change of the gmded mode and radiation modes of both

types due to mode conversion. The dashed–dotted line represents the

solution obtained by neglecting TE radiation modes as the coupled
modes.

sections as a parameter. It is clear that we would get

solutions of considerably higher accuracy by using smaller

divisions than steps of 3°. We have used 34 TM radiation

modes for the numerical analysis which are covering the

effective index of the TM radiation mode in the region of

2.17–2.28, and are considered to be sufficient for getting a

good approximation.

Fig. 10 illustrates what happens when TE radiation

modes are also included in the analysis. We included an

equal number of TE and TM radiation modes for the

numerical analysis. The solution obtained by neglecting the

TE radiation mode is drawn again with the dashed-dotted

line for comparison. The change of power of the TE guided

mode in both cases shows quite similar features, except

that the power, in the lattdr case, becomes appreciably

smaller in the region of a larger oblique angle. The dif-

ference is, of course, caused by the additional TE radiation

modes. Though the stored power of TE radiation modes is

negligibly small, as illustrated in Fig. 10, the contribution

to the power conversion between the guided TE mode and

TM radiation modes cannot be neglected in the present

example.

It has been pointed out that the upper limit of the

critical angle at which the guided TE mode begins to leak
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is defined as [7]

/-2 –M2

i

“of ““- Ilos

a, = arcsin (44)
n~f — n~f

We can calculate the critical angle aC = 19.7° for the pre-

sent example. It is found from the figures that the power of

the guided TE mode decreases markedly in the narrow

region of 150 –24° of the oblique angle within which the

critical angle calculated from (44) is included.
Mode coupling critically depends on the phase-matching

condition between the coupled modes. With the increase of

the oblique angle, Ky), in (27) decreases according to (28),

while KX. remains unchanged. Since the strongest electric-

field component E, of the TE mode senses KY} as the

refractive index of the medium, its propagation constant

decreases as the oblique angle increases. On the other

hand, the propagation constant of the TM mode does not

change. At any oblique angle smaller than the critical

angle, there exists no TM radiation mode which is phase-

matched with the guided TE mode. Therefore, the coupling

to the TM radiation mode is not so significant that the

power carried by the guided TE mode scarcely decreases

there, as shown in Fig. 10. When the oblique angle is larger

than the critical angle, the guided TE mode always matches

its propagation constant with some TM radiation mode.

Mode coupling, however, also depends strongly on the

field overlapping between the coupled modes. The coupling

coefficient given by (38) becomes an appreciable value only

if both conditions are satisfied. The field of the guided

mode varies according to a cosine function in the film

region and decays exponentially in the surrounding region,

while that of the radiation mode is expressed in terms of a

standing wave throughout the entire region. The larger the

oblique angle, the smaller the propagation constant of the

radiation mode, which is phase-matched with the guided

TE mode. For the radiation mode, the decrease of the

propagation constant is accompanied by more rapid spatial

oscillations in the transverse direction of the standing

wave, which reduces the value of the overlap integral of the

field. Therefore, the incident guided TE mode leaks its

power primarily only in a very narrow region centered on

the critical oblique angle as shown in Fig. 10. It would be

helpful in understanding the above physical explanation to

refer to [7, figs. 9 and 10].

In the present paper, the symmetric waveguide structure

has been adopted for simplicity in analytical procedure.

The present analysis, however, can cover the practical

asymmetric metal-diffused optical waveguides as well.

Numerical examples for the case of odd guided mode

incidence would be applicable to them because of large

asymmetry in their structure. From the present analysis, we

can also get some fundamental information about channel

waveguides having two-dimensional field confinement in

the transverse section. In general, there exist two types of

mode groups supported by such a channel waveguide as

shown in Fig. 1. The mode belonging to one type is

principally polarized normal to the waveguide surface, and

that belonging to the other type has a principal transverse

electric-field component parallel to the waveguide surface.

Both types are almost TEM-like. The latter type has the

same principal electric-field component as the TE mode of

the slab waveguide shown in Fig. 7. Thus, the electric field

of this mode senses the same refractive index as the TE

mode of the slab waveguide. Therefore, the results of the

present analysis will be applicable almost directly to the

mode of the latter type supported by the channel wave-

guide.

IV. CONCLUSIONS

We have studied the wave propagation in a symmetrical,

anisotropic slab waveguide consisting of uniaxial crystal-

line material. The direction of the optical axis may change

arbitrarily along the waveguide. The analysis was based on

the coupled-mode theory. We used a step function ap-

proximation for the arbitrary directional change of the

optical axis, and applied the hypothetical boundary method

to quantize the continuum of the radiation modes.

We first analyzed the wave propagation in the waveguide

with a constant oblique angle to estimate the approxi-

mating accuracy of our method. As a result, it is found

that our solution is highly accurate except for the error in-

troduced by reflected radiation from the hypothetical

boundary, which appears after the wave has traveled some

distance along the waveguide. Next, we described the

method used in the analysis of wave propagation in a

waveguide whose optical axis changes its direction arbi-

trarily. A waveguide with linear oblique angle change was

analyzed as a concrete example.

As a result, it is found that the guided TE mode leaks its

power predominantly in a very narrow region around the

critical oblique angle, and that TE radiation modes play an

important role in the power conversion, though the amount

of power carried by them is much smaller than that of TM

radiation modes.
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